Overview of Radioisotope Thermoelectric Generators: Theory, Materials and New Technology

Dr. Giacomo Cerretti

NASA Postdoctoral Program fellow
Thermal Energy Conversion Research & Advancement Group
NASA Jet Propulsion Laboratory/California Institute of Technology
Pasadena, CA

LA Postdoc Research Symposium 06/06/2019

~6 AU

MERCURY SOLAR

Orbiters

- Landers
- Rovers

RPS Polar Landers

· Long-lived Landers

BATTERIES

Short-lived

BATTERIES

Landers Atmospheric probes Surface Missions

Upper Atmosphere

<1AU

DISTANCE

1 AU

~1.5 AU

- Probes*
- Surface Probes**

SOLAR

RPS

Orbiters

RPS

MOON

SOLAR

Orbiters

Landers

Rovers

- Polar Landers Long-lived Current RPS not operable in Venus
 - Landers

BATTERIES

 Short-lived Landers

MARS

SOLAR

- Orbiters
- Landers
- Rovers

RPS

- · Long-lived Polar Lander
- · Long-lived, high capability rovers

BATTERIES

 Short-lived surface missions

ASTEROIDS

~2.2-3.2 AU

SOLAR

- · Sample Return
- Flybys/Tours
- Orbiters
- Landers

RPS

• May be necessary • Long-lived moon for Trojan asteroids landers

BATTERIES

missions

JUPITER SOLAR

- Orbiters
- Flybys

RPS

- High capability
- orbiters

BATTERIES

• Short-lived surface • Atmospheric Probes Short-lived landers

SATURN

~10 AU

- SOLAR • Flyby s/c
- Orbiters

RPS

- · High-capability orbiter • Ring observer
- Titan Montgolfier (MMRTG)
- · Long-lived surface mission

BATTERIES

- Atmospheric probes
- · Short-lived surface missions

URANUS

~20 AU

SOLAR Not likely to be

practical

RPS

- Orbiters
- Flvbvs
- Moon landers

BATTERIES

 Atmospheric probes

NEPTUNE

RPS

SOLAR SOLAR Not likely to be Not likely to be practical practical

~30 AU

~40 AU

RPS

KUIPER BELT

Orbiters

Landers

Flybys

- Orbiters
- Flybys

Atmospheric

probes

 Long-lived Triton Lander

BATTERIES BATTERIES

 Short-Lived landers

surface environment

POWER TECHNOLOGIES APPLICABLE TO SOLAR SYSTEM EXPLORATION MISSION CONCEPTS AS OF 2015⁽¹⁾

Solar

^{*}requires technology development for solar cells in corrosive environment

^{**}requires technology development for high temperature

RTGs in U.S. missions

Mission name	TE Mater.	Launc h year
Transit 4A	PbTe	1961
Transit 4B	PbTe	1962
Apollo 12	PbTe	1969
Triad-01-1x	PbTe	1972
Pioneer 10	PbTe	1972
Pioneer 11	PbTe	1973
Viking 1	PbTe	1975
Viking 2	PbTe	1975
LES 8	Si-Ge	1976
LES 9	Si-Ge	1976
Voyager 1	Si-Ge	1977
Voyager 2	Si-Ge	1977
Galileo	Si-Ge	1989
Ulysses	Si-Ge	1990
Cassini	Si-Ge	1997
New Horizons	Si-Ge	2006
MSL	PbTe	2011

MMRTGs architecture

Thermoelectric conversion

Thermoelectric power generation

Power generation

(across 1275 to 300 K)

State-Of-Practice materials:

ZT_{average} ~ 0.5

State-Of-the-Art materials: $ZT_{average} \sim 1.1$

Best SOA materials: $ZT_{peak} \sim 1.5$ to 2.0

PbTe/TAGS MMRTG (2008-present)

SiGe GPHS RTG (1980-2006)

Thermoelectric figure of merit

- 1. Maximize power: $P = V^2 / R$
- 2. Minimize energy loss to Joule heating
- 3. Minimize energy loss via heat conductance

Challenge: Decouple the electronic and thermal transport

"phonon glass, electron crystal"

Improving zT

- Starting with compounds characterized by complex crystal structures (inherently low thermal conductivity).
- Manipulation of electronic properties through **band** engineering (alloying/doping).
- Compositing to improve mechanical stability and electronic properties while reducing κ .
- Close coupling between theoretical simulations and *experimental* research:
 - Computational work to guide experimental.
 - Semi-empirical modeling to optimize materials systems.

Segmentation:

- zT_{avg} improved with segmented legs using materials that have peak zT at different temperatures.

Zintl phases

Th₃P₄

Advanced Segmented Couple 1273-473 K

Now and the future

- ✓ Large improvements in last 15 years!
- Better understanding of materials.
- ✓ NASA goal of η > 20% by 2020.

Acknowledgments

- This work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration
- The work has been supported by the NASA Science Mission Directorate's Radioisotope Power Systems Program under the Thermoelectric Technology Development Project
- G. Cerretti's research at Jet Propulsion Laboratory was supported by an appointment to the NASA Postdoctoral Program, administered by Universities Space Research Association under contract with NASA.

See

- https://rps.nasa.gov/
- https://www.jpl.nasa.gov/

- TECT Group, JPL
- Power and Sensors Systems Section, JPL

